

# **CT430**

# XtremeSense® TMR Ultra-Low Noise, <1% Total Error Current Sensor

#### **Features**

- Integrated Contact Current Sensing for Low to Medium Current Ranges:
  - o 0 A to +20 A
  - o -20 A to +20 A
  - o 0 A to +30 A
  - o -30 A to +30 A
  - o 0 A to +50 A
  - -50 A to +50 A
- Integrated Current Carrying Conductor (CCC)
- Linear Analog Output Voltage
- Total Error Output ≤ ±1.0% FS, -40°C to +125°C
- 1 MHz Bandwidth
- Response Time: ~0.30 µs
- Low Noise: 9 mA<sub>RMS</sub> to 15 mA<sub>RMS</sub> @ f<sub>BW</sub> = 100 kHz
- Reference Voltage Output for AC/DC Current Measurements
- VOUT VREF < 1.0% FS, -40°C to +125°C</li>
- Immunity to Common Mode Fields: < 5.0 mA/mT</li>
- Supply Voltage: 4.75 V to 5.50 V
- Over-Current Detection (OCD™)
  - Out of Range Currents
- 16-Lead SOIC-Wide Package

### **Applications**

- Solar/Power Inverters
- UPS, SMPS and Telecom Power Supplies
- Battery Management Systems
- Motor Control
- White Goods
- Power Utility Meters
- Over-Current Fault Protection

#### **Product Description**

The CT430 is a high bandwidth and ultra-low noise integrated contact current sensor that uses Crocus Technology's patented XtremeSense® TMR technology to enable high accuracy current measurements for many consumer, enterprise, and industrial applications. It supports six (6) current ranges where the integrated current carrying conductor (CCC) will handle up to 50 A of current and generates a current measurement as a linear analog output voltage. It achieves a total output error of less than  $\pm 1.0\%$  full-scale (FS) over voltage and the full temperature range.

It has about a 0.30 µs output response time while the current consumption is about 6.0 mA and is immune to common mode fields. The CT430 has an integrated overcurrent detection (OCD) circuitry to identify out of range currents (OCD) with the result outputted to the fault-bar (FLT) pin. The FLT is an open drain, active LOW digital signal that is activated by the CT430 to alert the microcontroller that a fault condition has occurred.

The CT430 is offered in an industry standard 16-lead SOIC-Wide package that is "green" and RoHS compliant.

# **Part Ordering Information**

| Part Number    | Operating<br>Temperature Range | Current Range  | Package                 | Packing Method |  |  |
|----------------|--------------------------------|----------------|-------------------------|----------------|--|--|
| CT430-ESWF20DR | -40°C to +85°C                 | 0 A to +20 A   |                         |                |  |  |
| CT430-HSWF20DR | -40°C to +125°C                | 0 A 10 +20 A   |                         |                |  |  |
| CT430-ESWF20MR | -40°C to +85°C                 | -20 A to +20 A |                         |                |  |  |
| CT430-HSWF20MR | -40°C to +125°C                | -20 A 10 +20 A | 4                       |                |  |  |
| CT430-ESWF30DR | -40°C to +85°C                 | 0.4 to 120.4   |                         |                |  |  |
| CT430-HSWF30DR | -40°C to +125°C                | 0 A to +30 A   | 16-lead SOIC-Wide       | Tana 9 Dagi    |  |  |
| CT430-ESWF30MR | -40°C to +85°C                 | 20 A to 120 A  | 10.20 x 10.31 x 2.54 mm | Tape & Reel    |  |  |
| CT430-HSWF30MR | -40°C to +125°C                | -30 A to +30 A |                         |                |  |  |
| CT430-ESWF50DR | -40°C to +85°C                 | 0 A to +50 A   |                         |                |  |  |
| CT430-HSWF50DR | -40°C to +125°C                | 0 A 10 +50 A   |                         |                |  |  |
| CT430-ESWF50MR | -40°C to +85°C                 | 50 A to 150 A  |                         |                |  |  |
| CT430-HSWF50MR | -40°C to +125°C                | -50 A to +50 A |                         |                |  |  |

## **Evaluation Board Ordering Information**

| Part Number | Current Range  | Operating Temperature Range |
|-------------|----------------|-----------------------------|
| CTD430-20DC | 0 A to +20 A   |                             |
| CTD430-20AC | -20 A to +20 A |                             |
| CTD430-30DC | 0 A to +30 A   | -40°C to +85°C              |
| CTD430-30AC | -30 A to +30 A | ₹40 C t0 +65 C              |
| CTD430-50DC | 0 A to +50 A   |                             |
| CTD430-50AC | -50 A to +50 A |                             |

## **Block Diagram**

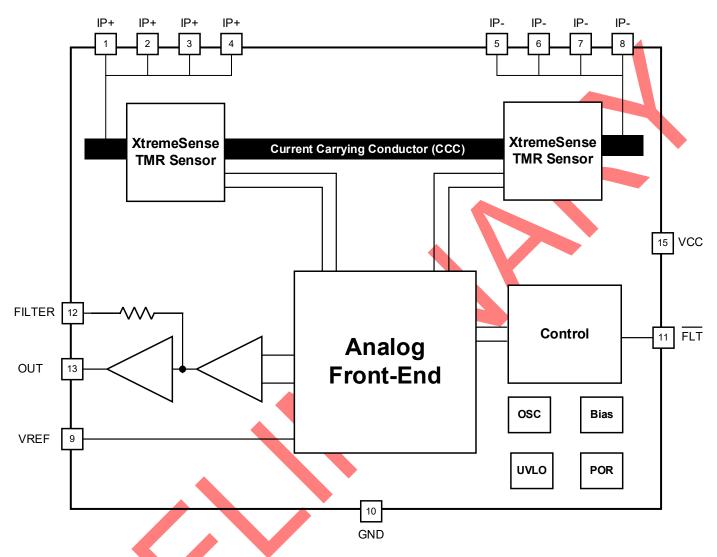



Figure 1. CT430 Functional Block Diagram for 16-lead SOIC-Wide Package

# **Application Diagram**

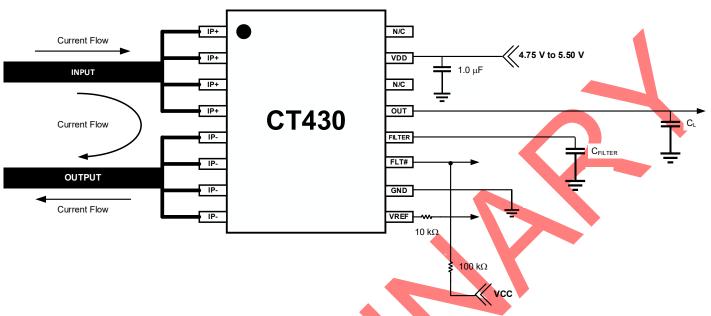



Figure 2. CT430 Application Block Diagram

Table 1. Recommended External Components

| Component         | Description                | Vendor & Part Number        | Parameter | Min. | Тур.    | Max. | Unit |
|-------------------|----------------------------|-----------------------------|-----------|------|---------|------|------|
| Свур              | 1.0 µF, X5R or<br>Better   | Murata<br>GRM155C81A105KA12 | С         |      | 1.0     |      | μF   |
| CFILTER           | Various, X5R or<br>Better  | Murata                      |           |      | Table 2 |      | pF   |
| R <sub>FLT#</sub> | 100 kΩ Pull-up<br>Resistor | Various                     | R1        |      | 100     |      | kΩ   |
| Rvref             | 10 kΩ Resistor             | Various                     | R2        |      | 10      |      | kΩ   |

# **CT430 Pin Configuration**

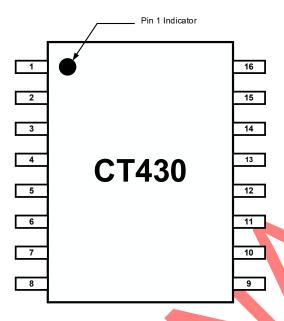



Figure 3. CT430 Pin-out Diagram for 16-lead SOIC-Wide Package (Top-Down View)

## **Pin Definition**

| Pin # | Pin Name | Pin Description                                                                                                                                                                                       |
|-------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     |          |                                                                                                                                                                                                       |
| 2     | IP+      | Input primary conductor (positive).                                                                                                                                                                   |
| 3     | IF '     | input primary conductor (positive).                                                                                                                                                                   |
| 4     |          |                                                                                                                                                                                                       |
| 5     |          |                                                                                                                                                                                                       |
| 6     | IP-      | Output primary conductor (negative).                                                                                                                                                                  |
| 7     | P        | Output primary conductor (negative).                                                                                                                                                                  |
| 8     |          |                                                                                                                                                                                                       |
| 9     | VREF     | Reference voltage output. If not used, then do not connect.                                                                                                                                           |
| 10    | GND      | Ground.                                                                                                                                                                                               |
|       | FLT      | Active LOW output fault signal (open drain output) to indicate that the following parameters are outside of normal operational bounds:  Over-Current Detection UVLO If not used, then do not connect. |
| 12    | FILTER   | Filter pin to improve noise performance by connecting an external capacitor to set the cut-off frequency.                                                                                             |
| 13    | OUT      | Analog output voltage that represents the measured current.                                                                                                                                           |
| 14    | N/C      | No connect.                                                                                                                                                                                           |
| 15    | VCC      | Supply voltage.                                                                                                                                                                                       |
| 16    | N/C      | No connect                                                                                                                                                                                            |

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the CT430 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                | Parameter                                 |                                                                                  | Min. | Max.       | Unit |
|-----------------------|-------------------------------------------|----------------------------------------------------------------------------------|------|------------|------|
| Vcc                   | Supply Voltage                            |                                                                                  | -0.3 | 6.0        | V    |
| V <sub>I/O</sub>      | Analog Input/Output Pins                  | s Maximum Voltage                                                                | -0.3 | Vcc + 0.3* | ٧    |
| I <sub>CCC(MAX)</sub> | Current Carrying Conduc                   | ctor, T <sub>A</sub> = +25°C                                                     |      | 60         | Α    |
| Vsurge                | Dielectric Surge<br>Strength Test Voltage | IEC 61000-4-5: Tested ±5 Pulses at 2/60 seconds, 1.2 μs (rise) and 50 μs (width) | 10   |            | kV   |
| Isurge                | Surge Strength Test<br>Current            | Tested ±5 Pulses at 3/60 seconds, 8.0 µs (rise) and 20 µs (width)                | 10   |            | kA   |
| FSD                   | Electrostatic Discharge                   | Human Body Model (HBM) per JESD22-A114                                           | ±2.0 |            | 14/  |
| ESD                   | Protection Level                          | Charged Device Model (CDM) per JESD22-C101                                       | ±0.5 |            | kV   |
| TJ                    | Junction Temperature                      |                                                                                  | -40  | +150       | °C   |
| TstG                  | Storage Temperature                       |                                                                                  | -65  | +155       | °C   |
| TL                    | Lead Soldering Tempera                    | ature, 10 Seconds                                                                |      | +260       | °C   |

<sup>\*</sup>The lower of  $V_{CC}$  + 0.3 V or 6.0 V.

## **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual operation of the CT430. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol | Parameter                     |                     | Min. | Тур. | Max. | Unit |
|--------|-------------------------------|---------------------|------|------|------|------|
| Vcc    | Supply Voltage Range          |                     | 4.75 | 5.00 | 5.50 | V    |
| Vout   | OUT Voltage Range             |                     | 0    |      | Vcc  | V    |
| Іоит   | OUT Current                   |                     |      |      | ±1.0 | mA   |
| +      | Operating Ambient Temperature | Industrial          | -40  | +25  | +85  | °C   |
| TA     | Operating Ambient Temperature | Extended Industrial | -40  | +25  | +125 | C    |

## Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB) with 2 oz. of copper (Cu). Special attention must be paid not to exceed junction temperature T<sub>J(MAX)</sub> at a given ambient temperature T<sub>A</sub>.

| Symbol    | Parameter                                        | Min. | Тур. | Max. | Unit |
|-----------|--------------------------------------------------|------|------|------|------|
| θJA_SOICW | Junction-to-Ambient Thermal Resistance, SOICW-16 |      | 119  | 144  | °C/W |
| θJC_SOICW | Junction-to-Case Thermal Resistance, SOICW-16    |      | 86   | 112  | °C/W |

## **Isolation Ratings**

| Symbol                                 | Parameter                  | Conditions                                                                                                      | Rating     | Unit              |
|----------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|------------|-------------------|
| V <sub>ISO</sub>                       | Rated Isolation Voltage    | Agency Tested per IEC 62368* for 60 seconds.  Production Tested at V <sub>ISO</sub> for 1 second per IEC 62368. | 5.0        | kV <sub>RMS</sub> |
|                                        |                            | Agency Tested per UL1577 for 60 seconds.  Production Tested at V <sub>ISO</sub> for 1 second per UL1577.        | 5.0        | kV <sub>RMS</sub> |
| V.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Working Voltage for Basic  | Tested per per IEC 62368*                                                                                       | 1820       | $V_{PK}$          |
| Vwork_iso                              | Isolation                  | Tested per per IEC 02300                                                                                        | 1287       | V <sub>RMS</sub>  |
| Vwork ri                               | Working Voltage for        | Tt-d n-n IFO 00000*                                                                                             |            | V <sub>PK</sub>   |
| V WORK_RI                              | Reinforced Isolation       | Tested per IEC 62368*                                                                                           | 647        | V <sub>RMS</sub>  |
| d <sub>CR</sub>                        | Creepage Distance          | Minimum Distance Along Package Body from IP<br>Pins to I/O Pins                                                 | 9.21       | mm                |
| d <sub>CL</sub>                        | Clearance Distance         | Minimum Distance Through Air from IP Pins to I/O Pins                                                           | 8.79       | mm                |
| dıso                                   | Distance Through Isolation | Minimum Internal Distance Through Isolation                                                                     | 40         | μm                |
| CTI                                    | Comparative Tracking Index | Material Group II                                                                                               | 400 to 599 | V                 |

<sup>\*</sup>IEC 62368 is the succeeding standard to IEC 60950-1 (Edition 2) for isolation testing specifications and as such it will be compliant to the latter standard.

## **Electrical Specifications**

#### **General Parameters**

| Symbol              | Parameter                                       | Conditions                                     | Min. | Тур. | Max. | Unit |
|---------------------|-------------------------------------------------|------------------------------------------------|------|------|------|------|
| Power Supplies      |                                                 |                                                |      |      |      |      |
| Icc                 | Supply Current                                  | $f_{BW}$ = 1 MHz<br>No load, $I_P$ = 0 A       |      | 6.0  | 9.0  | mA   |
| Іоит                | OUT Maximum Drive Capability                    | OUT covers 10% to 90% of V <sub>CC</sub> span. | -1.0 |      | +1.0 | mA   |
| CL_OUT              | OUT Capacitive Load (1)                         |                                                |      |      | 100  | pF   |
| RL_OUT              | OUT Resistive Load (1)                          |                                                |      | 100  |      | kΩ   |
| IVREF               | VREF Maximum Drive Capability                   |                                                | -50  |      | +50  | μΑ   |
| C <sub>L_VREF</sub> | VREF Capacitive Load <sup>(1)</sup>             |                                                |      |      | 10   | pF   |
| RL_VREF             | VREF Resistive Load (1)                         |                                                |      | 100  |      | kΩ   |
| RFILTER             | Internal Filter Resistance (1)                  |                                                |      | 15   |      | kΩ   |
| RIP                 | Primary Conductor Resistance (1)                |                                                |      | 0.5  |      | mΩ   |
| PSRR                | Power Supply Rejection Ratio (1)                |                                                |      | TBD  |      | dB   |
| SPSRR               | Sensitivity Power Supply<br>Rejection Ratio (1) |                                                |      | TBD  |      | dB   |

| Symbol                 | Parameter                                | Conditions                                                            | Min.                   | Тур.                              | Max. | Unit   |
|------------------------|------------------------------------------|-----------------------------------------------------------------------|------------------------|-----------------------------------|------|--------|
| OPSRR                  | Offset Power Supply Rejection Ratio (1)  |                                                                       |                        | TBD                               |      | dB     |
| Analog Ou              | tput (OUT)                               |                                                                       |                        |                                   |      |        |
| V <sub>OUT</sub>       | OUT Voltage Linear Range                 | $V_{SIG\_AC} = \pm 2.00 \text{ V}$<br>$V_{SIG\_DC} = +4.00 \text{ V}$ | 0.50                   |                                   | 4.50 | V      |
| Vout_sat               | Output High Saturation Voltage           | V <sub>OUT</sub> , T <sub>A</sub> = +25°C,                            | V <sub>CC</sub> - 0.30 | V <sub>CC</sub> - 0.25            |      | V      |
| CMFR                   | Common Mode Field Rejection (1)          |                                                                       |                        | 5                                 |      | mA/mT  |
| TCS                    | Temperature Coefficient of Sensitivity   | Absolute Value<br>T <sub>A</sub> = -40°C to +125°C                    |                        | 10                                | 40   | ppm/°C |
| TCO                    | Temperature Coefficient of Offset (1)    | Absolute Value<br>T <sub>A</sub> = -40°C to +125°C                    |                        | 0.16                              |      | % FS   |
| Reference              | Voltage (VREF)                           |                                                                       |                        |                                   |      | •      |
| V <sub>REF</sub>       | Reference Voltage                        | DC Current (Unipolar) AC Current (Bipolar)                            |                        | 0.50<br>2.50                      |      | V      |
| Fault Outp             | ut (FLT)                                 | (= 1, = 1, = 1, = 1, = 1, = 1, = 1, = 1,                              |                        |                                   |      |        |
| V <sub>FLT#_OL</sub>   | FLT Voltage LOW                          | I <sub>FLT</sub> #_OUT ≤ 20 mA                                        | 0                      |                                   | 0.5  | V      |
| I <sub>LEAK_FLT#</sub> | High Impedance Output<br>Leakage Current | V <sub>FLT#_OH</sub> = V <sub>CC</sub>                                |                        | 5                                 |      | μΑ     |
| RPU                    | FLT Pull-up Resistor                     |                                                                       |                        | 100                               |      | kΩ     |
| Timings                |                                          |                                                                       |                        |                                   |      |        |
| ton                    | Power-On Time (1)                        | V <sub>CC</sub> ≥ 2.50 V                                              |                        | 100                               | 200  | μs     |
| t <sub>RISE</sub>      | Rise Time (1)                            | $I_P = I_{RANGE(MAX)}$                                                |                        | 0.20                              |      | μs     |
| tresponse              | Response Time (1)                        | T <sub>A</sub> = +25°C,                                               |                        | 0.30                              |      | μs     |
| t <sub>DELAY</sub>     | Propagation Delay (1)                    | C <sub>L</sub> = 220 pF                                               |                        | 0.25                              |      | μs     |
| Protection             |                                          |                                                                       |                        |                                   |      |        |
| Vuvlo                  | Under-Voltage Lockout                    | Rising Vcc                                                            |                        | 2.50                              |      | V      |
| VOVLO                  | Olider-Voltage Lockdut                   | Falling V <sub>CC</sub>                                               |                        | 2.45                              |      | V      |
| V <sub>UV_HYS</sub>    | UVLO Hysteresis                          |                                                                       |                        | 50                                |      | mV     |
| loop u                 | Over-Current Detection (OCD)             | Rising I <sub>P</sub>                                                 |                        | 1.1 ×<br>I <sub>RANGE(MAX)</sub>  |      | A      |
| IOCD_U                 | for DC Current (Unipolar)                | Falling I <sub>P</sub>                                                |                        | 0.9 ×<br>I <sub>RANGE(MAX)</sub>  |      |        |
|                        | Over-Current Detection (OCD)             | Rising I <sub>P</sub>                                                 |                        | ±1.1 × IRANGE(MAX)                |      |        |
| locd_b                 | for AC Current (Bipolar) `               | Falling I <sub>P</sub>                                                |                        | ±0.9 ×<br>I <sub>RANGE(MAX)</sub> |      | A      |
| locd_HYS               | Over-Current Detection Hysteresis        |                                                                       |                        | 0.2 ×<br>I <sub>RANGE(MAX)</sub>  |      | Α      |

<sup>(1)</sup> Guaranteed by design and/or characterization; not tested in production.

### **Electrical Characteristics**

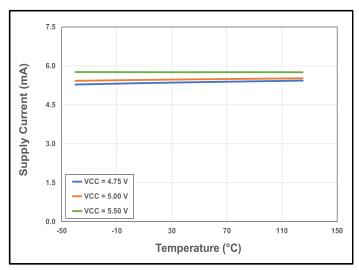



Figure 4. CT430 Supply Current vs. Temperature vs. Supply Voltage

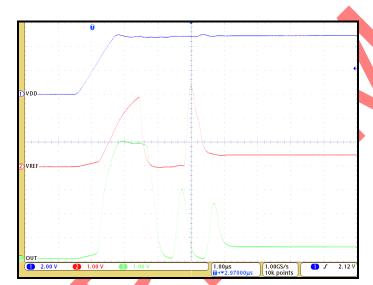



Figure 5. CT430 Startup Waveforms for  $V_{OQ} = 0.50 \text{ V}$  (DC Current)



Figure 6. CT430 Startup Waveforms for V<sub>OQ</sub> = 2.50 V (AC Current)

## **Electrical Characteristics (continued)**

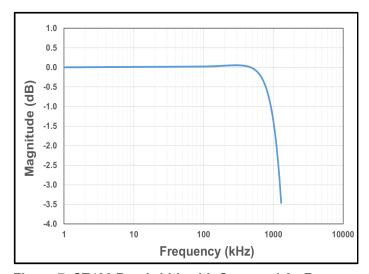



Figure 7. CT430 Bandwidth with  $C_{FILTER} = 1.0 pF$ 

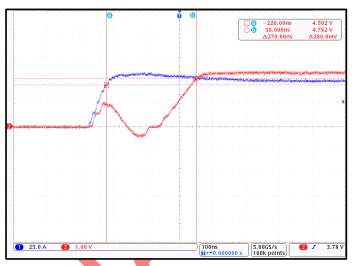



Figure 8. CT430 Response Time;  $I_P = 50 A_{PK}$  and  $C_L = 220 pF$  (Blue = Iccc, Red =  $V_{OUT}$ )

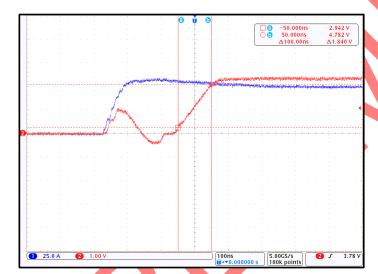



Figure 9. CT430 Rise Time;  $I_P$  = 50  $A_{PK}$  and  $C_L$  = 220 pF (Blue =  $I_{CCC}$ , Red =  $I_{COL}$ )




Figure 10. CT430 Propagation Delay;  $I_P$  = 50  $A_{PK}$  and  $C_L$  = 220 pF (Blue =  $I_{CCC}$ , Red =  $V_{OUT}$ )

## **Electrical Characteristics (continued)**

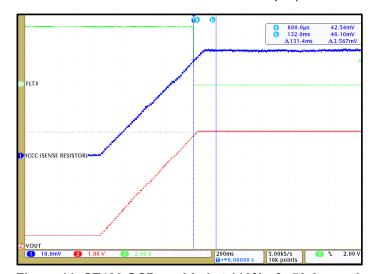



Figure 11. CT430 OCD enabled at 110% of +50  $A_{\text{DC}}$  and FLT# is LOW



Figure 12. CT430 OCD disabled at 90% of +50 A<sub>DC</sub> and FLT# is HIGH



Figure 13. CT430 OCD enabled at +110% of +50 A<sub>PK</sub> and FLT# is LOW



Figure 14. CT430 OCD disabled at +90% of +50  $A_{\mbox{\scriptsize PK}}$  and FLT# is HIGH

## **Electrical Characteristics (continued)**




Figure 15. CT430 OCD enabled at -110% of -50  $A_{\text{PK}}$  and FLT# is LOW

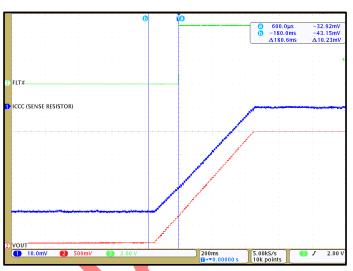



Figure 16. CT430 OCD disabled at -90% of -50  $A_{\text{PK}}$  and FLT# is HIGH

### CT430-xSWF20DR: 0 A to +20 A

| Symbol                              | Parameter                                | Conditions                                                                                         | Min.  | Тур.  | Max.  | Unit              |  |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|-------|-------|-------|-------------------|--|
| IRANGE                              | Current Range                            |                                                                                                    | 0     |       | +20   | Α                 |  |
| Voq                                 | Voltage Output Quiescent                 | T <sub>A</sub> = +25°C, I <sub>P</sub> = 0 A                                                       | 0.495 | 0.500 | 0.505 | V                 |  |
| V <sub>OUT</sub> - V <sub>REF</sub> | OUT – VREF Offset<br>Voltage             | $V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                   |       | 5.0   |       | mV                |  |
| S                                   | Sensitivity                              | IRANGE(MIN) < IP < IRANGE(MAX)                                                                     |       | 200   |       | mV/A              |  |
| Еоит                                | Total Output Error                       | $I_P = I_{P(MAX)}$                                                                                 |       | ±0.7  | ±1.0  | % FS              |  |
| E <sub>LIN</sub>                    | Non-Linearity Error                      | I <sub>P</sub> = 0 A to +20 A                                                                      |       | ±0.3  | ±0.5  | % FS              |  |
| Eout-vref                           | VOUT – VREF Error                        | $I_P = I_{P(MAX)}, V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | 1     |       | ±1.0  | % FS              |  |
| f <sub>BW</sub>                     | Bandwidth (1)                            | Small Signal = -3 dB                                                                               |       | 1.0   |       | MHz               |  |
| e <sub>N</sub>                      | Noise (1)                                | $T_A = +25^{\circ}C$ , $f_{BW} = 100 \text{ kHz}$                                                  |       | 9.0   |       | mA <sub>RMS</sub> |  |
| Lifetime D                          | Lifetime Drift                           |                                                                                                    |       |       |       |                   |  |
| ETOT_DRIFT                          | Total Output Error<br>Lifetime Drift (1) | I <sub>P</sub> = I <sub>P(MAX)</sub>                                                               |       | ±1.0  |       | % FS              |  |

<sup>(1)</sup> Guaranteed by design and characterization; not tested in production.

### **Electrical Characteristics for CT430-xSWF20DR**

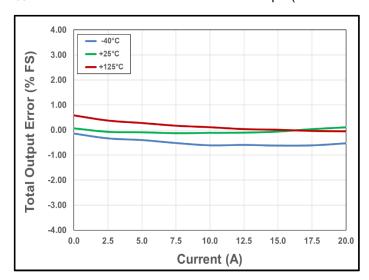



Figure 17. Total Output Error vs. Current vs. Temperature

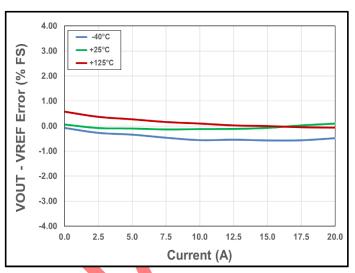



Figure 18. VOUT – VREF Error vs. Current vs. Temperature

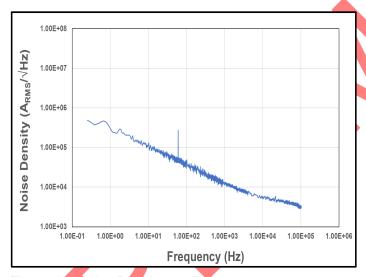



Figure 19. Noise Density vs. Frequency

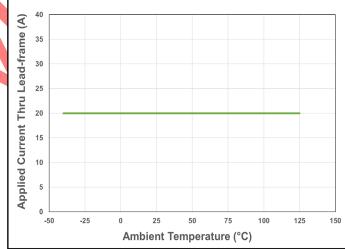



Figure 20. CT430 Current De-rating Curve for 20 ADC

## CT430-xSWF20MR: -20 A to +20 A

| Symbol                              | Parameter                                | Conditions                                                                                         | Min.  | Тур.  | Max.  | Unit              |  |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|-------|-------|-------|-------------------|--|
| IRANGE                              | Current Range                            |                                                                                                    | -20   |       | +20   | Α                 |  |
| Voq                                 | Voltage Output Quiescent                 | T <sub>A</sub> = +25°C, I <sub>P</sub> = 0 A                                                       | 2.495 | 2.500 | 2.505 | V                 |  |
| V <sub>OUT</sub> - V <sub>REF</sub> | OUT – VREF Offset<br>Voltage             | $V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                   |       | 5.0   |       | mV                |  |
| S                                   | Sensitivity                              | IRANGE(MIN) < IP < IRANGE(MAX)                                                                     |       | 100   |       | mV/A              |  |
| Еоит                                | Total Output Error                       | $I_P = I_{P(MAX)}$                                                                                 |       | ±0.5  | ±1.0  | % FS              |  |
| E <sub>LIN</sub>                    | Non-Linearity Error                      | I <sub>P</sub> = -20 A to +20 A                                                                    |       | ±0.3  | ±0.5  | % FS              |  |
| Eout-vref                           | VOUT – VREF Error                        | $I_P = I_{P(MAX)}, V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | 1     |       | ±1.0  | % FS              |  |
| f <sub>BW</sub>                     | Bandwidth (1)                            | Small Signal = -3 dB                                                                               |       | 1.0   |       | MHz               |  |
| e <sub>N</sub>                      | Noise (1)                                | $T_A = +25^{\circ}C$ , $f_{BW} = 100 \text{ kHz}$                                                  |       | 10.0  |       | mA <sub>RMS</sub> |  |
| Lifetime D                          | Lifetime Drift                           |                                                                                                    |       |       |       |                   |  |
| ETOT_DRIFT                          | Total Output Error<br>Lifetime Drift (1) | I <sub>P</sub> = I <sub>P(MAX)</sub>                                                               |       | ±1.0  |       | % FS              |  |

<sup>(1)</sup> Guaranteed by design and characterization; not tested in production.

### **Electrical Characteristics for CT430-xSWF20MR**

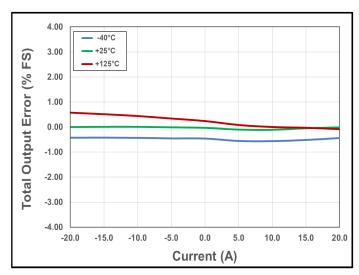



Figure 21. Total Output Error vs. Current vs. Temperature

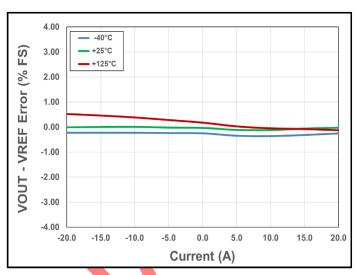



Figure 22. VOUT – VREF Error vs. Current vs. Temperature

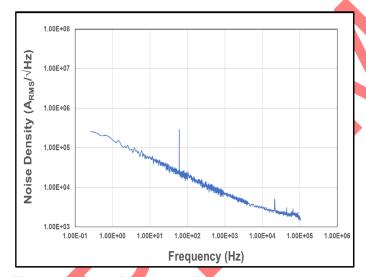



Figure 23. Noise Density vs. Frequency

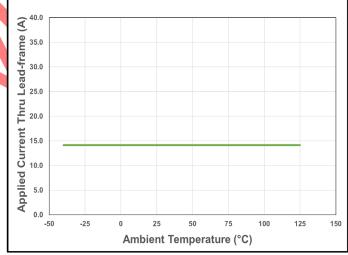



Figure 24. CT430 Current De-rating Curve for 20  $A_{\text{PK}}$  (14.1  $A_{\text{DC}})$ 

### CT430-xSWF30DR: 0 A to +30 A

| Symbol                                 | Parameter                                | Conditions                                                                       | Min.  | Тур.  | Max.  | Unit              |  |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-------|-------|-------|-------------------|--|
| IRANGE                                 | Current Range                            |                                                                                  | 0     |       | +30   | Α                 |  |
| Voq                                    | Voltage Output Quiescent                 | $T_A = +25^{\circ}C$ , $I_P = 0$ A                                               | 0.495 | 0.500 | 0.505 | V                 |  |
| V <sub>OUT</sub> -<br>V <sub>REF</sub> | OUT – VREF Offset<br>Voltage             | $V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ |       | 5.0   |       | mV                |  |
| S                                      | Sensitivity                              | IRANGE(MIN) < IP < IRANGE(MAX)                                                   |       | 133.3 |       | mV/A              |  |
| Еоит                                   | Total Output Error                       | $I_P = I_{P(MAX)}$                                                               |       | ±0.7  | ±1.0  | % FS              |  |
| E <sub>LIN</sub>                       | Non-Linearity Error                      | I <sub>P</sub> = 0 A to +30 A                                                    |       | ±0.3  | ±0.5  | % FS              |  |
| Eout-vref                              | VOUT – VREF Error                        | $I_P = I_{P(MAX)}, V_{CC} = 5.0 \text{ V}$<br>$T_A = -40$ °C to +125°C           | -     |       | ±1.0  | % FS              |  |
| f <sub>BW</sub>                        | Bandwidth (1)                            | Small Signal = -3 dB<br>C <sub>FILTER</sub> = 5 pF                               |       | 1.0   |       | MHz               |  |
| e <sub>N</sub>                         | Noise (1)                                | $T_A = +25^{\circ}C$ , $f_{BW} = 100 \text{ kHz}$                                |       | 10.0  |       | mA <sub>RMS</sub> |  |
| Lifetime Drift                         |                                          |                                                                                  |       |       |       |                   |  |
| ETOT_DRIFT                             | Total Output Error<br>Lifetime Drift (1) | I <sub>P</sub> = I <sub>P(MAX)</sub>                                             |       | ±1.0  |       | % FS              |  |

<sup>(1)</sup> Guaranteed by design and characterization, not tested in production.

### **Electrical Characteristics for CT430-xSWF30DR**

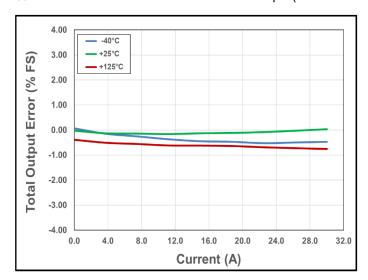



Figure 25. Total Output Error vs. Current vs. Temperature

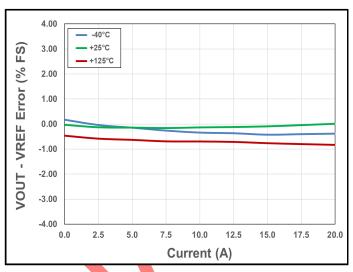



Figure 26. VOUT – VREF Error vs. Current vs. Temperature

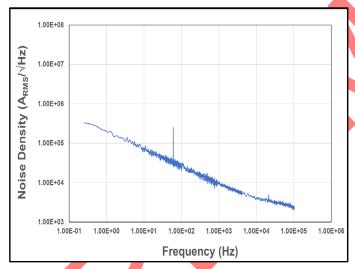



Figure 27. Noise Density vs. Frequency

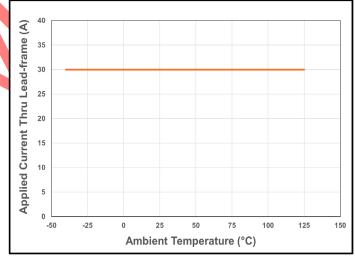



Figure 28. CT430 Current De-rating Curve for 30 A<sub>DC</sub>

## CT430-xSWF30MR: -30 A to +30 A

| Symbol                     | Parameter                                | Conditions                                                                       | Min.  | Тур.  | Max.  | Unit              |
|----------------------------|------------------------------------------|----------------------------------------------------------------------------------|-------|-------|-------|-------------------|
| IRANGE                     | Current Range                            |                                                                                  | -30   |       | +30   | Α                 |
| Voq                        | Voltage Output Quiescent                 | $T_A = +25^{\circ}C$ , $I_P = 0$ A                                               | 2.495 | 2.500 | 2.505 | V                 |
| Vout -<br>V <sub>REF</sub> | OUT – VREF Offset<br>Voltage             | $V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ |       | 5.0   |       | mV                |
| S                          | Sensitivity                              | IRANGE(MIN) < IP < IRANGE(MAX)                                                   |       | 66.7  |       | mV/A              |
| Еоит                       | Total Output Error                       | $I_P = I_{P(MAX)}$                                                               |       | ±0.5  | ±1.0  | % FS              |
| E <sub>LIN</sub>           | Non-Linearity Error                      | I <sub>P</sub> = -30 A to +30 A                                                  |       | ±0.3  | ±0.5  | % FS              |
| EOUT-VREF                  | VOUT – VREF Error                        | $I_P = I_{P(MAX)}, V_{CC} = 5.0 \text{ V}$<br>$T_A = -40$ °C to +125°C           | 1     |       | ±1.0  | % FS              |
| f <sub>BW</sub>            | Bandwidth (1)                            | Small Signal = -3 dB<br>C <sub>FILTER</sub> = 5 pF                               |       | 1.0   |       | MHz               |
| e <sub>N</sub>             | Noise (1)                                | $T_A = +25^{\circ}C$ , $f_{BW} = 100 \text{ kHz}$                                |       | 11.5  |       | mA <sub>RMS</sub> |
| Lifetime Drift             |                                          |                                                                                  |       |       |       |                   |
| ETOT_DRIFT                 | Total Output Error<br>Lifetime Drift (1) | $I_P = I_{P(MAX)}$                                                               |       | ±1.0  |       | % FS              |

<sup>(1)</sup> Guaranteed by design and characterization; not tested in production.

### **Electrical Characteristics for CT430-xSWF30MR**

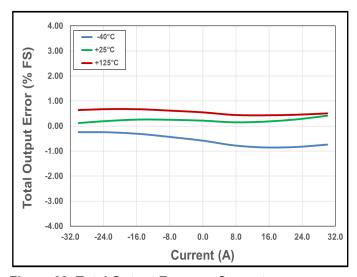



Figure 29. Total Output Error vs. Current vs. Temperature

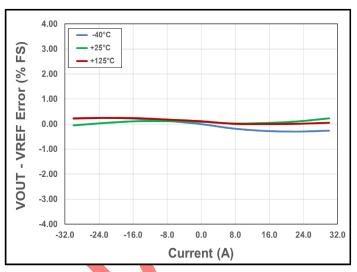



Figure 30. VOUT – VREF Error vs. Current vs. Temperature

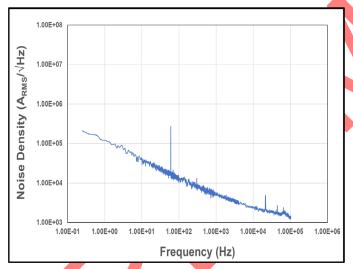



Figure 31. Noise Density vs. Frequency

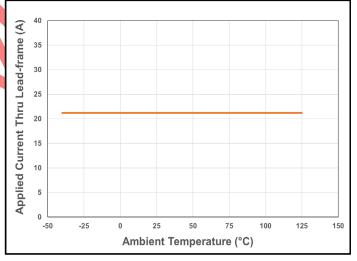



Figure 32. CT430 Current De-rating Curve for 30  $A_{PK}$  (21.2  $A_{DC}$ )

### CT430-xSWF50DR: 0 A to +50 A

| Symbol                     | Parameter                                | Conditions                                                                       | Min.  | Тур.  | Max.  | Unit              |  |
|----------------------------|------------------------------------------|----------------------------------------------------------------------------------|-------|-------|-------|-------------------|--|
| IRANGE                     | Current Range                            |                                                                                  | 0     |       | +50   | Α                 |  |
| Voq                        | Voltage Output Quiescent                 | $T_A = +25^{\circ}C$ , $I_P = 0$ A                                               | 0.495 | 0.500 | 0.505 | V                 |  |
| Vout -<br>V <sub>REF</sub> | OUT – VREF Offset<br>Voltage             | $V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ |       | 5.0   |       | mV                |  |
| S                          | Sensitivity                              | IRANGE(MIN) < IP < IRANGE(MAX)                                                   |       | 80    |       | mV/A              |  |
| Еоит                       | Total Output Error                       | $I_P = I_{P(MAX)}$                                                               |       | ±1.0  | ±1.5  | % FS              |  |
| E <sub>LIN</sub>           | Non-Linearity Error                      | I <sub>P</sub> = 0 A to +50 A                                                    |       | ±0.3  | ±0.5  | % FS              |  |
| Eout-vref                  | VOUT – VREF Error                        | $I_P = I_{P(MAX)}, V_{CC} = 5.0 \text{ V}$<br>$T_A = -40$ °C to +125°C           | -     |       | ±1.0  | % FS              |  |
| f <sub>BW</sub>            | Bandwidth (1)                            | Small Signal = -3 dB                                                             |       | 1.0   |       | MHz               |  |
| e <sub>N</sub>             | Noise (1)                                | $T_A = +25^{\circ}C$ , $f_{BW} = 100 \text{ kHz}$                                |       | 10.0  |       | mA <sub>RMS</sub> |  |
| Lifetime D                 | Lifetime Drift                           |                                                                                  |       |       |       |                   |  |
| ETOT_DRIFT                 | Total Output Error<br>Lifetime Drift (1) | $I_P = I_{P(MAX)}$                                                               |       | ±1.0  |       | % FS              |  |

<sup>(1)</sup> Guaranteed by design and characterization; not tested in production.

### **Electrical Characteristics for CT430-xSWF50DR**

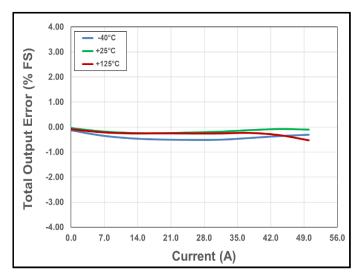



Figure 33. Total Output Error vs. Current vs. Temperature

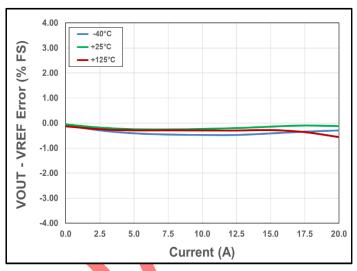



Figure 34. VOUT – VREF Error vs. Current vs. Temperature

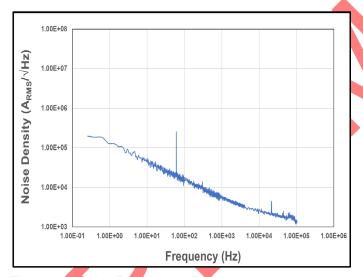



Figure 35. Noise Density vs. Frequency

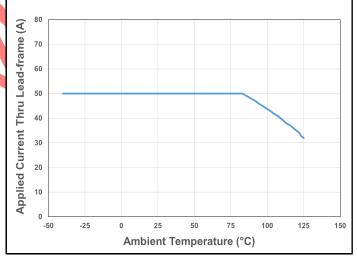



Figure 36. CT430 Current De-rating Curve for 50 A<sub>DC</sub>

### CT430-xSWF50MR: -50 A to +50 A

| Symbol                 | Parameter                                | Conditions                                                                       | Min.  | Тур.  | Max.  | Unit              |  |
|------------------------|------------------------------------------|----------------------------------------------------------------------------------|-------|-------|-------|-------------------|--|
| I <sub>RANGE</sub>     | Current Range                            |                                                                                  | -50   |       | +50   | Α                 |  |
| Voq                    | Voltage Output Quiescent                 | T <sub>A</sub> = +25°C, I <sub>P</sub> = 0 A                                     | 2.495 | 2.500 | 2.505 | V                 |  |
| Vout -<br>Vref         | OUT – VREF Offset<br>Voltage             | $V_{CC} = 5.0 \text{ V}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ |       | 5.0   |       | mV                |  |
| S                      | Sensitivity                              | I <sub>RANGE(MIN)</sub> < I <sub>P</sub> < I <sub>RANGE(MAX)</sub>               |       | 40    |       | mV/A              |  |
| Еоит                   | Total Output Error                       | $I_P = I_{P(MAX)}$                                                               |       | ±0.5  | ±1.0  | % FS              |  |
| ELIN                   | Non-Linearity Error                      | I <sub>P</sub> = -50 A to +50 A                                                  |       | ±0.3  | ±0.5  | % FS              |  |
| E <sub>OUT-VREF</sub>  | VOUT – VREF Error                        | $I_P = I_{P(MAX)}, V_{CC} = 5.0 \text{ V}$<br>$T_A = -40$ °C to +125°C           | •     |       | ±1.0  | % FS              |  |
| f <sub>BW</sub>        | Bandwidth (1)                            | Small Signal = -3 dB                                                             |       | 1.0   |       | MHz               |  |
| en                     | Noise (1)                                | $T_A = +25^{\circ}C$ , $f_{BW} = 100 \text{ kHz}$                                |       | 14.0  |       | mA <sub>RMS</sub> |  |
| Lifetime D             | Lifetime Drift                           |                                                                                  |       |       |       |                   |  |
| E <sub>TOT_DRIFT</sub> | Total Output Error<br>Lifetime Drift (1) | $I_P = I_{P(MAX)}$                                                               |       | ±1.0  |       | % FS              |  |

<sup>(1)</sup> Guaranteed by design and characterization; not tested in production.

### **Electrical Characteristics for CT430-xSWF50MR**

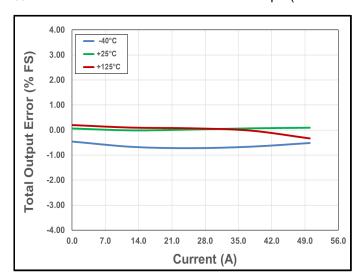



Figure 37. Total Output Error vs. Current vs. Temperature

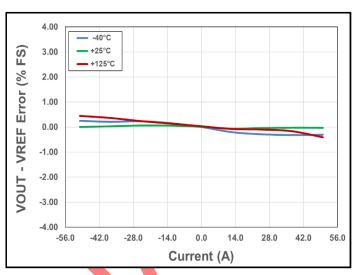



Figure 38. VOUT – VREF Error vs. Current vs. Temperature

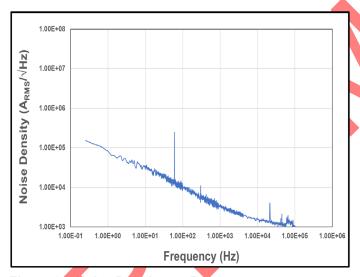



Figure 39. Noise Density vs. Frequency

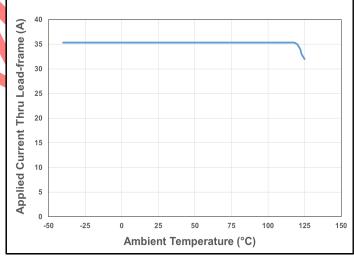



Figure 40. CT430 Current De-rating Curve for 50  $A_{PK}$  (35.4  $A_{DC}$ )

## **Circuit Description**

#### Overview

The CT430 is a very high accuracy contact current sensor with an integrated current carrying conductor (CCC) that handles up to 50 A. It has very high sensitivity and a wide dynamic range with excellent accuracy (very low total output error) across temperature. This current sensor supports six (6) current ranges:

- 0 A to +20A
- -20 A to +20 A
- 0 A to +30 A
- -30 A to +30 A
- 0 A to +50 A
- -50 A to +50 A

When current is flowing through the CCC, the XtemeSense TMR sensors inside the chip senses the field which in turn generates differential voltage signals that then goes through the Analog Front-End (AFE) to output a current measurement with less than  $\pm 1.0\%$  full-scale (FS) total output error (Eout).

The chip is designed to enable a very fast response time of  $0.30~\mu s$  for the current measurement from the OUT pin as the bandwidth for the CT430 is 1.0 MHz. Even with a high bandwidth, the chip consumes a minimal amount of power.

## **Linear Output Current Measurement**

The CT430 provides a continuous linear analog output voltage which represents the current measurement. The output voltage range of OUT is from 0.50 V to 4.50 V with a Voq of 0.50 V and 2.50 V for unidirectional and bidirectional currents, respectively. Figure 41 illustrates the output voltage range of the OUT pin as a function of the measured current.

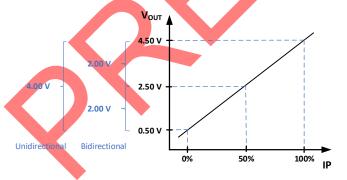



Figure 41. Linear Output Voltage Range (OUT) vs. Measured Current (IP)

#### **Filter Function (FILTER)**

The CT430 has a pin for the FILTER function which will enable it to improve the noise performance by changing the cut-off frequency. The bandwidth of the CT430 is 1.0 MHz however by adding a capacitor to the FILTER pin which will be in series with an internal resistance of approximately 15 k $\Omega$  will set the cut-off frequency to reduce the noise.

Table 2 shows the capacitor values required to achieve four (4) cut-off frequencies.

$$f_{Cut-off} = \frac{1}{2\pi RC}$$

Table 2. R-C Filter Options for FILTER Pin

| Cut-off<br>Frequency | C <sub>FILTER</sub> (pF) | Capacitor Part<br>Number |
|----------------------|--------------------------|--------------------------|
| 100 kHz              | 47                       | GRM0225C1C470JA02        |
| 250 kHz              | 20                       | GRM0225C1C200JA02        |
| 500 kHz              | 10                       | GRM0225C1C100JA03        |
| 1.0 MHz              | 5 or lower               | GRM0225C1C5R0CA03        |

### Voltage Reference Function (VREF)

The CT430 has a reference voltage (VREF) pin that may be used as an output voltage reference for AC or DC current measurements. The VREF pin should be connected to a buffer circuit.

If the VREF is not used, then it should be left unconnected.

### Sensitivity

The Sensitivity (S) is a change in CT430's output in response to a change in 1 A of current flowing through the CCC. It is defined by the product of the magnetic circuit sensitivity (G/A, where 1.0 G = 0.1 mT) and the chip's linear amplifier gain (mV/G). Therefore, the result of this gives a sensitivity unit of mV/A. The CT430 is factory calibrated to optimize the sensitivity for the full scale of the device's dynamic range.

## **Total Output Error**

The Total Output Error is the difference between the current measured by CT430 and the actual current, relative to the actual current. It is equivalent to the ratio between the difference of the ideal and actual voltage to the ideal sensitivity multiplied by the current flowing through the primary conductor (CCC). The following

equation defines the Total Output Error ( $E_{\text{OUT}}$ ) for the CT430:

$$E_{OUT} = \frac{V_{IOUT\_IDEAL}(I_P) - V_{IOUT}(I_P)}{S_{IDEAL}(I_P) \times I_P}$$

The  $E_{OUT}$  incorporates all sources of error and is a function of the sensed current ( $I_P$ ) from CT430. At high current levels, the  $E_{OUT}$  will be dominated by the sensitivity error whereas at low current, the dominant characteristic is the offset voltage. Figure 42 shows the behavior of  $E_{OUT}$  versus  $I_P$ . When  $I_P$  goes to 0 from both directions, the curves exhibit asymptotic behavior i.e.  $E_{OUT}$  approaches infinity.

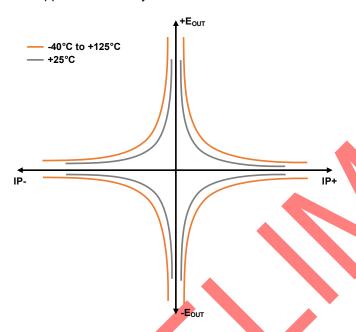



Figure 42. Total Output Error (Eout) vs. Sensed Current (IP)

The CT430 achieves a total output error ( $E_{OUT}$ ) that is less than  $\pm 1.0\%$  of Full-Scale (FS) over supply voltage and temperature. It is designed with innovative and proprietary TMR sensors and circuit blocks to provide very accurate current measurements regardless of the operating conditions.

### Power-On Time (ton)

The Power-On Time ( $t_{ON}$ ) of 100 µs is the amount of time required by CT430 to start up, fully power the chip and becoming fully operational from the moment the supply voltage is applied to it. This time includes the ramp up time and the settling time (within 10% of steady-state voltage) after the power supply has reached the minimum  $V_{CC}$ .

#### Response Time (tresponse)

The Response Time ( $t_{RESPONSE}$ ) of 0.30  $\mu$ s for the CT430 is the time interval between the following terms:

- 1. When the primary current signal reaches 90% of its final value.
- 2. When the chip reaches 90% of its output corresponding to the applied current.

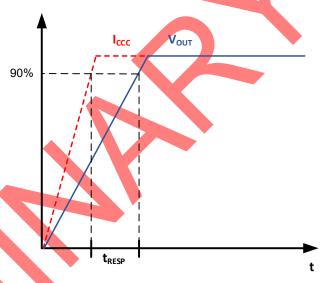



Figure 43. CT430 Response Time Curve

#### Rise Time (trise)

The CT430's rise time,  $t_{RISE}$ , is the time interval of when it reaches 10% and 90% of the full-scale output voltage. The  $t_{RISE}$  of the CT430 is 0.20  $\mu s$ .

### Propagation Delay (tdelay)

The Propagation Delay (t<sub>DELAY</sub>) is the time difference between these two events:

- 1. When the primary current reaches 20% of its final value
- 2. When the chip reaches 20% of its output corresponding to the applied current.

The CT430 has a propagation delay of 0.25 µs.

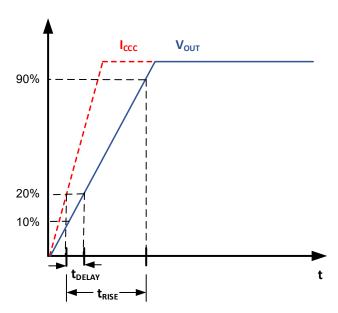



Figure 44. CT430 Propagation Delay and Rise Time Curve

### **Over-Current Detection (OCD)**

The Over-Current Detection (OCD) circuitry detects measured current values that are 110% above the maximum current range value of the CT430 for the unipolar (DC current) variant. For the bipolar (AC current) variant of the CT430 it is greater than  $\pm 110\%$  of the maximum current range. This will generate a fault signal via the Fault# Interrupt (FLT) pin (LOW) to the host system's microcontroller. Once the measured current falls to 90% of the maximum current range for the DC current variant or  $\pm 90\%$  for the AC current version then the fault will be cleared, and the FLT pin will go HIGH.

### **Under-Voltage Lockout (UVLO)**

The Under-Voltage Lock-out protection circuitry of the CT430 is activated when the supply voltage (Vcc) falls below 2.45 V. The CT430 remains in a low quiescent state until Vcc rises above the UVLO threshold (2.50 V). In this condition where the Vcc is less than 2.45 V and UVLO is triggered, the output from the CT430 is not valid and the  $\overline{FLT}$  pin will go LOW. Once the Vcc rises above 2.50 V then the UVLO is cleared, and the  $\overline{FLT}$  pin will be HIGH.

## Fault# Interrupt (FLT)

The CT430 generates an active LOW digital fault signal via the FLT pin to interrupt the microcontroller to indicate a fault event has been triggered. It is an open drain output and requires a pull-up resistor with a value of  $100~\text{k}\Omega$  tied to Vcc. A fault signal will interrupt the host system for these events:

- OCD
- UVLO

The FLT signal will be asserted LOW whenever one of the above fault events occur. In the case of an UVLO event, the FLT pin will stay LOW until the fault is cleared and then go HIGH.

If the FLT is not used, then it should be left unconnected.

#### **Immunity to Common Mode Fields**

The CT430 is housed in custom plastic packages that utilize a "U-shaped" lead-frame to reduce the common mode fields generated as current flows through the CCC. With the "U-shaped" lead-frame, the stray fields cancel one another thus reducing electro-magnetic interference (EMI).

Also, good PCB layout of the CT430 will optimize performance and reduce EMI. Please see the Applications Information section in this data sheet for recommendations on PCB layout.

### Creepage and Clearance

Two important terms as it relates to isolation provided by the package are: creepage and clearance. Creepage is defined as the shortest distance across the surface of the package from one side the leads to the other side of the leads. The definition for clearance is the shortest distance between the leads of opposite side through the air. Figure 45 illustrates the creepage and clearance for the SOICW-16 package of the CT430.



Figure 45. The Creepage and Clearance for the CT430's SOICW-16 package

## **Applications Information**

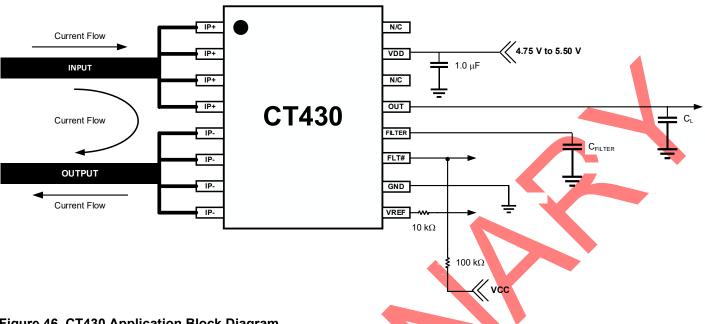



Figure 46. CT430 Application Block Diagram

### **Application**

The CT430 is an integrated contact current sensor that can be used in many applications from measuring current in power supplies to motor control to over-current fault protection. It is a plug-and-play solution in that no calibration is required and it outputs to a microcontroller a simple linear analog output voltage which corresponds to a current measurement value. A second output called FLT# alerts the host system to any fault event that may occur in the CT430. Figure 46 is an application diagram of how CT430 would be implemented in a system. The third output is the VREF which provides the output reference voltage of the CT430.

It is designed to support an operating voltage range of 4.75 V to 5.50 V, but it is ideal to use a 5.0 V power supply where the output tolerance is less than ±5%.

## **Bypass Capacitor**

A single 1.0 µF capacitor is needed for the VCC pin to reduce the noise from the power supply and other circuits. This capacitor should be placed as close as possible to the CT430 to minimize inductance and resistance between the two devices.

### Filter Capacitor

A capacitor may be added to the FILTER pin of the CT430 if there is a requirement to improve the noise performance. The capacitor will be connected to an internal resistor of 15 k $\Omega$  inside the chip to form a R-C filter. This R-C filter produces a cut-off frequency that will reduce the noise over this lower bandwidth.

#### FLT and VREF Resistors

For the CT430, the FLT# pin is an open drain output. It requires a pull-up resistor value of 100 k $\Omega$  to be connected from the pin to V<sub>CC</sub>.

In designs where the VREF pin is used, a 10 k $\Omega$  resistor must be connected as close to the pin as possible in series with a load.

If the FLT# and/or VREF pins are not needed in the application, then these pins should not be connected and be left floating.

### Recommended PCB Layout

Since the CT430 can measure up to 50 A of current, special care must be taken in the printed circuit board (PCB) layout of the CT430 and the surrounding circuitry. It is recommended that the CCC pins be connected to as much copper area as possible. It is also recommended that 2 oz. or heavier copper be used for PCB traces when the CT430 is used to measure 50 A of current. Additional layers of the PCB should also be used to carry current and be connected using the arrangement of vias.

Figure 47 shows the recommended the PCB layout for the 20 A and 30 A variants of CT430 while Figure 48 illustrates the 50 A variant. Please note that the traces connected to the IP+ and IP- pins of CT430 are very wide with multiple vias such that it can handle the high current.




Figure 47. Recommended PCB Layout for the 20 A and 30 A variants of the CT430.

The PCB layout for the 50 A versions of the CT430 shows even wider traces in the below figure.

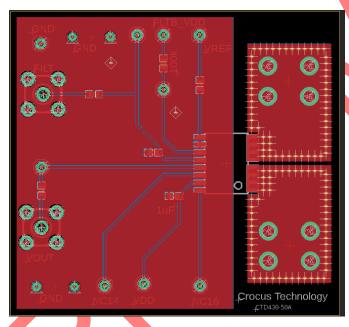



Figure 48. Recommended PCB Layout for the 50 A variant of the CT430.

## **SOICW-16 Package Drawing and Dimensions**

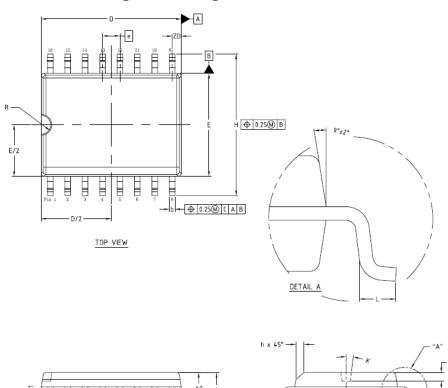
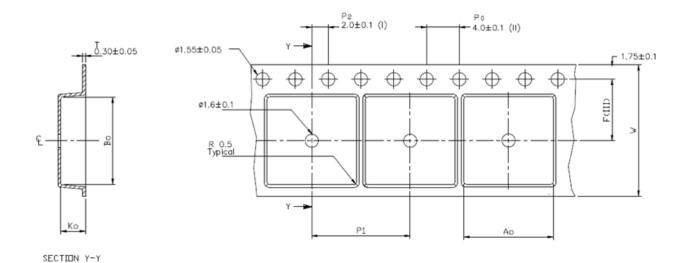



Figure 49. SOICW-16 Package Drawing

SIDE VIEW

Table 3. CT430 SOICW-16 Package Dimensions

| Symbol   | Dimensions in Millimeters (mm) |          |       |  |  |  |  |
|----------|--------------------------------|----------|-------|--|--|--|--|
| Syllibol | Min.                           | Тур.     | Max.  |  |  |  |  |
| Α        | 2.44                           | 2.54     | 2.64  |  |  |  |  |
| A1       | 0.10                           | 0.20     | 0.30  |  |  |  |  |
| A2       | 2.24                           | 2.34     | 2.44  |  |  |  |  |
| Ь        | 0.36                           | 0.41     | 0.46  |  |  |  |  |
| C        | 0.24                           | 0.25     | 0.26  |  |  |  |  |
| D        | 10.11                          | 10.21    | 10.31 |  |  |  |  |
| ш        | 7.40                           | 7.50     | 7.60  |  |  |  |  |
| е        |                                | 1.27 BSC |       |  |  |  |  |
|          | 10.11                          | 10.31    | 10.51 |  |  |  |  |
| h        | 0.31                           | 0.51     | 0.71  |  |  |  |  |
| 7        | 0.53                           | 0.63     | 0.73  |  |  |  |  |
| K        |                                | 7° BSC   |       |  |  |  |  |
|          | 0.51                           | 0.76     | 1.01  |  |  |  |  |
| R        | 0.63                           | 0.76     | 0.89  |  |  |  |  |
| ZD       | 0.66 REF                       |          |       |  |  |  |  |
| α        | 0°                             | -        | 8°    |  |  |  |  |


Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

END VIEW

#### NOTES

- 1. ALL DIMENSIONS IN MM.
- 2. PACKAGE SURFACE FINISHING: 2.1. TOP : MATTE (CHARMILLES #18~30) 2.2. BOTTOM : MATTE (CHARMILLES #12~27)
- LEAD COPLANARITY SHOULD BE 0 TO 0.10MM MAX.
   ALL DIMENSIONS EXCLUDING MOLD FLASHES AND END FLASH FROM THE PACKAGE BODY SHALL NOT EXCEED 0.25MM

## **SOICW-16 Tape & Pocket Drawing and Dimensions**



| Ao             | 10.90 +/- 0.1  |
|----------------|----------------|
| Во             | 10.70 +/- 0.1  |
| Ko             | 3.00 +/- 0.1   |
| F              | 7.50 +/- 0.1   |
| P <sub>1</sub> | 12.00 +/- 0.1  |
| W              | 16.00 ± /- 0.3 |

Figure 50. SOICW-16 Package Drawing

## CT430 Tape Pocket Orientation

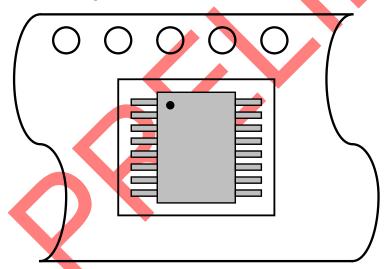



Figure 51. SOICW-16 Orientation in Tape Pocket

- Measured from centreline of sprocket hole (1)
- to centreline of pocket. Cumulative tolerance of 10 sprocket holes is  $\pm$  0.20 . (II)
- Measured from centreline of sprocket hole to centreline of pocket. Other material available.
- Typical SR of form tape Max 10 OHM/SQ

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

## **Package Information**

**Table 4. CT430 Package Information** 

| Part Number    | Package<br>Type | # of<br>Leads | Package<br>Quantity | Lead<br>Finish | Eco Plan (1) | MSL<br>Rating (2) | Operating<br>Temperature <sup>(3)</sup> | Device<br>Marking |
|----------------|-----------------|---------------|---------------------|----------------|--------------|-------------------|-----------------------------------------|-------------------|
| CT430-ESWF20DR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +85°C                          | CT430<br>ESWF20DR |
| CT430-HSWF20DR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +125°C                         | CT430<br>HSWF20DR |
| CT430-ESWF20MR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +85°C                          | CT430<br>ESWF20MR |
| CT430-HSWF20MR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +125°C                         | CT430<br>HSWF20MR |
| CT430-ESWF30DR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +85°C                          | CT430<br>ESWF30DR |
| CT430-HSWF30DR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +125°C                         | CT430<br>HSWF30DR |
| CT430-ESWF30MR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +85°C                          | CT430<br>ESWF30MR |
| CT430-HSWF30MR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +125°C                         | CT430<br>HSWF30MR |
| CT430-ESWF50DR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +85°C                          | CT430<br>ESWF50DR |
| CT430-HSWF50DR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +125°C                         | CT430<br>HSWF50DR |
| CT430-ESWF50MR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +85°C                          | CT430<br>ESWF50MR |
| CT430-HSWF50MR | SOIC-W          | 16            | 1,000               | Sn             | Green & RoHS | 3                 | -40°C to +125°C                         | CT430<br>HSWF50MR |

<sup>(1)</sup> RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

<sup>(2)</sup> MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

<sup>(3)</sup> Package will withstand ambient temperature range of -40°C to +125°C and storage temperature range of -65°C to +150°C.

## **Device Marking**

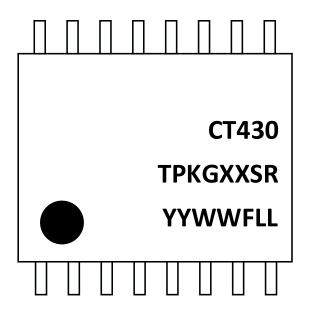



Figure 52. CT430 Device Marking for 16-lead Package

| Row No. | Code  | Definition             |
|---------|-------|------------------------|
| 3       | •     | Pin 1 Indicator        |
| 1       | CT430 | Crocus Part Number     |
| 2       | T     | Temperature            |
| 2       | PKG   | Package Type           |
| 2       | XX    | Maximum Current Rating |
| 2       | SR    | Current Range          |
| 3       | YY    | Calendar Year          |
| 3       | WW    | Work Week              |
| 3       | F     | Factory Code           |
| 3       | LL    | Lot Code               |

Table 5. CT430 Device Marking Definition for 16-lead SOIC-W Package



**Disclaimer:** The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

### **Product Status Definition**

| <b>Data Sheet Identification</b> | Product Status                                    | Definition                                                                                                                                                                                                                                         |
|----------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                        | Proposed New<br>Product Idea or In<br>Development | Data sheet contains design target specifications and are subject to change without notice at any time.                                                                                                                                             |
| Preliminary                      | First Production                                  | Data sheet contains preliminary specifications obtained by measurements of early samples. Follow-on data will be published at a later date as more test data is acquired. Crocus reserves the right to make changes to the data sheet at any time. |
| None                             | Full Production                                   | Data sheet contains final specifications for all parameters. Crocus reserves the right to make changes to the data sheet at any time.                                                                                                              |
| Obsolete                         | Not in Production                                 | Data sheet for a product that is no longer in production at Crocus. It is for reference only.                                                                                                                                                      |